Preview

The Body's Response to Acute Exercise

Powerful Essays
Open Document
Open Document
2015 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
The Body's Response to Acute Exercise
Unit 2: The Psychology of Fitness
Assignment 1: The Body’s Response to Acute Exercise

Introduction:
As a health and fitness instructor I need to be able to apply my anatomical and physiological knowledge to practical activities and exercises. I have conducted practical assessments to explore how the body responds to physical activity and exercise. I have then written a report, including all the anatomical and physiological changes that occur within each of the bodily systems.
Acute exercises are a lower intensity for a shorter period of time. For example it could be twenty minutes on the treadmill. Acute responses are immediate responses to exercise such as an increase in body temperature and heart rate.
Components of Fitness Test Results
Aerobic endurance Multi stage fitness test Level 9.8
Flexibility Sit and reach 32cm
Muscular endurance Sit ups 25
Power Vertical jump 42cm
Musculoskeletal Response to Acute Exercise: There is an increase in blood supply as it has to go to the parts of the body that are exercising the most. For example if an individual took part in a cross country run, the blood supply would increase because their legs would need more energy. This means that there would be more blood circulating in their legs than normal because they are being overworked. During acute exercise muscle pliability increases allowing a greater range of movement. Acute exercise causes muscle fibre tears.
Energy Systems Response to Acute Exercise:
An energy systems response to acute exercise happens when the exercise is of a high intensity, which is too much for the cardiovascular and respiratory system to deal with. The first response is to use the creatine phosphate energy system.
The first response is to use the creatine phosphate energy system. This works in the fast-twitch muscle fibre of the muscles high energy creatine phosphate compounds which are able to break down extremely quickly to create large amounts of ATP. ATP is where we get the

You May Also Find These Documents Helpful

  • Good Essays

    • Musculoskeletal response: increased blood supply; increase in muscle pliability; increased range of movement; muscle fibre micro tears • Energy systems: phosphocreatine; lactic acid; aerobic; energy continuum; energy requirements of different sport and exercise activities • Cardiovascular response: heart rate anticipatory response; activity response; increased blood pressure; vasoconstriction; vasodilation • Respiratory response: increase in breathing rate (neural and chemical control); increased tidal volume. Musculoskeletal system The short term effects on MUSCLES/ JOINTS and BONES Musculoskeletal response: increased blood supply; increase in muscle pliability; increased range of movement; muscle fibre micro tears…

    • 613 Words
    • 4 Pages
    Good Essays
  • Good Essays

    pdh notes engergy systems

    • 702 Words
    • 3 Pages

    The alactacid system (ATP/PC) uses the stored ATP modules in the muscles, for a few seconds or one explosive moment. The ATP molecule is then unable to provide energy to the working muscles. To continue the muscular movement , the body relies on creatine phosphate (PC) in a secondary reaction. This system is used for short bouts of exercise. Especially those lasting up to 12 seconds.…

    • 702 Words
    • 3 Pages
    Good Essays
  • Good Essays

    The arterioles in the skeletal muscles dilate, which increases blood flow to the muscles and leads to an overall drop in peripheral resistance. At the same time there is vasoconstriction in the vessels supplying blood to the abdominal organs and kidneys. This makes sense: if an individual was running from an attacking lion, digestion wouldn’t be a high priority while the muscles involved in escape would be. Another cardiovascular response to exercise is an increase in blood pressure, particularly systolic pressure: this is a result of the increase in the volume of blood being pumped from the heart.3 Finally there is the longer-term response to continuing to exercise, which is remodeling of the…

    • 1037 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    You may list, as students report out, the physiological changes to the respiratory, cardiovascular, neuromuscular, and urinary systems expected during strenuous exercise and as noted in the case of the cyclist, Joe. Students will respond with answers suggesting increases in heart rate, respiration, sweating and muscle fatigue, as well as muscle soreness as normal. However, in reality, in an effort to sustain maximum energy output over extended periods of time, endurance athletes train so that organ systems make the necessary physiological adaptations and are not subject to radical changes in function. Metabolic changes can occur with extensive endurance training in the muscles, hearts and lungs of the athlete, increasing efficiency of system utilization (Thompson, 2000).…

    • 3735 Words
    • 107 Pages
    Powerful Essays
  • Good Essays

    During exercise your body uses stored glycogen when that is depleted the body will acquire a buildup of lactic acid from the muscles tearing. (That is how you build muscle; it tears and then heals, then gets larger and stronger.) This lactic acid is produced to be used for fuel. An athlete`s muscles are adapted to use the larger quantities of lactic acid. Whereas a sedentary individual is not, their muscles would hurt and burn and fatigue much faster than that of a fit person. ( http://wiki.answers.com/Q/What_does_lactic_acid_do_while_exercising) However there is a buildup of creatine which comes from muscle injury. The byproducts of muscle metabolism increases the osmotic gradient, thus pulling water, increasing blood pressure, which pushes more fluid into the interstitial space. These factors together can cause blood volume to drop, which would cause the hematocrit to drop as well.…

    • 521 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    atp worksheet

    • 347 Words
    • 2 Pages

    An immediate source of energy is _____ creatine phosphate________________ (CP), but the supplies are limited and rapidly depleted.…

    • 347 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    The onset of muscle fatigue has hindered many athletes from achieving their maximum performance. Over the years we have been taught that it is the build-up of lactic acid that is the downfall of muscle fatigue and soreness. This is only partially true; there is a little more to it than what we have been told. I hope that this article provides you with a possible short-term remedy and does not confuse you more but rather makes you more aware of what is going on when your muscles become fatigued.

During short term (anaerobic) exercise, ATP and creatine phosphate (CP) are used up within the first 7 seconds of training. This signals the metabolism of glycogen to produce energy for your body.…

    • 853 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Fatigue is caused when glucose is broken down and oxidized to the pyruvate, and lactate is produced from the pyruvate faster than the tissues can remove it, so lactate concentration begins to rise. First, ATP breaks down creating energy for the muscular contraction. Then it binds to the myosin head and reattaches itself creating contraction. Glycogen is the storage form of glucose and is used to generate energy faster, producing lactic acid, In order for exercise to continue for any length of time, ATP must quickly and continually be reformed. This is accomplished by finding other sources of inorganic phosphate and energy so ADP can be reconverted back to ATP. The rate of lactic acid accumulation will depend upon the demand placed on ATP to release energy for muscular contraction, and the ability of creative phosphate and aerobic metabolism to meet that…

    • 469 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Creatine's Organic Role

    • 1118 Words
    • 5 Pages

    Creatine's organic role cannot be disparaged. It assumes a key biological role for mammals, fish, reptiles and amphibians. Creatine helps muscles in delivering adenosine triphosphate (ATP), the substance that facilitates blasts of energy down to the cellular level. Creatine is put away in muscle cells as phosphocreatine and is utilized to produce cell vitality for muscle compressions. The phosphate of ATP is exchanged to creatine, producing creatine phosphate, through the activity of creatine phosphokinase. Creatine phosphate is a storage type of rapid energy. Creatine keeps the body from depending entirely on the procedure of glycolysis, which delivers a net of two ATP…

    • 1118 Words
    • 5 Pages
    Good Essays
  • Good Essays

    Not enough oxygen may reach the muscles during exercise. When this happens, they use anaerobic respiration to obtain energy.…

    • 811 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Creatine Supplements

    • 262 Words
    • 2 Pages

    Creatine is naturally produced in the body. It assists in the process of creating ATP (the body’s energy source). This process is known as the phosphagen system, and it creates a small amount of energy very rapidly without a need for oxygen. Creatine supplementation is thought to make this process faster and more efficient, but this may not actually happen in all cases.…

    • 262 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    module 1

    • 968 Words
    • 8 Pages

    Explain how you feel about your scores when compared to the Healthy Fitness Zone Standards.…

    • 968 Words
    • 8 Pages
    Satisfactory Essays
  • Powerful Essays

    D1 evaluate three different techniques that are used by coaches, to improve the performance of athletes…

    • 1569 Words
    • 5 Pages
    Powerful Essays
  • Good Essays

    Creatine Research Paper

    • 510 Words
    • 3 Pages

    Creatine in the form of phosphocreatine is an important store of energy in muscle cells. During intense exercise lasting around half a minute, phosphocreatine is broken down to creatine and phosphate, and the energy released is used to regenerate the primary source of energy, adenosine triphosphate . Output power drops as phosphocreatine becomes depleted, because ATP cannot be regenerated fast enough to meet the demand of the exercise. It follows that a bigger store of phosphocreatine in muscle should reduce fatigue during sprinting. Extra creatine in the muscle may also increase the rate of regeneration of phosphocreatine following sprints, which should mean less fatigue with repeated bursts of activity in training or in many sport…

    • 510 Words
    • 3 Pages
    Good Essays
  • Good Essays

    energy systems

    • 1073 Words
    • 5 Pages

    In the 5000m race the runner must use all 3 energy systems , which are ATP, aerobic and lactic acid systems to succeed as the race has different areas needed for their use, all 3 energy systems contribute regardless of the intensity or duration of the exercise. When the athlete comes to the starting line he/she most probably will want to make a dashing start to the race to tactically get a good starting position, so must get off the line, in the first 40-50m, as hard as he or she can. By getting off the line as fast as the athlete can, they will both set themselves up with a good strong fast early rhythm, but also by getting near to the front of the pack they will be able to choose their position in the early portions of the race. But to achieve take off and the short sprint they must use the creatine phosphate system which uses ATP molecules as energy for any muscle contraction to occur, obviously when exercising at a high level like sprinting more ATP are needed to supply the energy, but because stores only last for up to 4 seconds the body needs a system that can re-synthesise adenosine die phosphate in to Adenosine tri phosphate very quickly when an individual starts to exercise. Carbohydrates, fats and proteins are digested to provide a source of energy. Carbohydrates are usually in the short term and fats are mainly used in the long term, protein is used as a stand by source of ATP. To get carbohydrates we can eat foods such as potatoes, rice, bread and fruit, and when they are digested they release glucose which is then stored in the body as glycogen, to supply energy to the phosphates, this is known as anaerobic glycolysis, and also used when exercise is at high intensity. The athlete does need to be weary of how long they use this system at the start of the race because could run out of fuel to supply the ATP which can only run anaerobically for up to 3 min which would lead to an unwanted substance early on in the race called lactic acid which would…

    • 1073 Words
    • 5 Pages
    Good Essays