Preview

students should be penalized for missing classes

Satisfactory Essays
Open Document
Open Document
25752 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
students should be penalized for missing classes
APPLYING NEWTON’S LAWS

5.1.

5

IDENTIFY: a = 0 for each object. Apply ΣFy = ma y to each weight and to the pulley.
SET UP: Take + y upward. The pulley has negligible mass. Let Tr be the tension in the rope and let Tc

be the tension in the chain.
EXECUTE: (a) The free-body diagram for each weight is the same and is given in Figure 5.1a.
ΣFy = ma y gives Tr = w = 25.0 N.
(b) The free-body diagram for the pulley is given in Figure 5.1b. Tc = 2Tr = 50.0 N.
EVALUATE: The tension is the same at all points along the rope.

Figure 5.1a, b
5.2.

5.3.

IDENTIFY: Apply Σ F = ma to each weight.
SET UP: Two forces act on each mass: w down and T ( = w) up.
EXECUTE: In all cases, each string is supporting a weight w against gravity, and the tension in each string is w.
EVALUATE: The tension is the same in all three cases.
IDENTIFY: Both objects are at rest and a = 0. Apply Newton’s first law to the appropriate object. The maximum tension Tmax is at the top of the chain and the minimum tension is at the bottom of the chain.
SET UP: Let + y be upward. For the maximum tension take the object to be the chain plus the ball. For the

minimum tension take the object to be the ball. For the tension T three-fourths of the way up from the bottom of the chain, take the chain below this point plus the ball to be the object. The free-body diagrams in each of these three cases are sketched in Figures 5.3a, 5.3b and 5.3c. mb + c = 75.0 kg + 26.0 kg = 101.0 kg. mb = 75.0 kg. m is the mass of three-fourths of the chain: m = 3 (26.0 kg) = 19.5 kg.
4
EXECUTE: (a) From Figure 5.3a, Σ Fy = 0 gives Tmax − mb + c g = 0 and

Tmax = (101.0 kg)(9.80 m/s 2 ) = 990 N. From Figure 5.3b, Σ Fy = 0 gives Tmin − mb g = 0 and
Tmin = (75.0 kg)(9.80 m/s2 ) = 735 N.
(b) From Figure 5.3c, Σ Fy = 0 gives T − (m + mb ) g = 0 and T = (19.5 kg + 75.0 kg)(9.80 m/s 2 ) = 926 N.
EVALUATE: The tension in the chain increases linearly from the bottom to the top of the chain.
©

You May Also Find These Documents Helpful

  • Good Essays

    Nt1310 Unit 4

    • 313 Words
    • 2 Pages

    2) In Fig. 6-33, two blocks are connected over a pulley. The mass of block A is 7.8 kg and the coefficient of kinetic friction between A and the incline is 0.13. Angle θ of the incline is 44°. Block A slides down the incline at constant speed. What is the mass of block B?…

    • 313 Words
    • 2 Pages
    Good Essays
  • Satisfactory Essays

    1. Determine the magnitude of the reactions on the beam at A and B in Fig. 1. Neglect the thickness of the beam. (5-11). 2. Determine the tension in the cable and the horizontal and vertical components of reaction of the pin A in Fig. 2. The pulley at D is frictionless and the cylinder weighs 80 lb. (5-18)…

    • 262 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    AP Physics Slinky Lab

    • 468 Words
    • 4 Pages

    1. The first slinky’s mass was weighed, using a scale, and its tension was measured using a…

    • 468 Words
    • 4 Pages
    Satisfactory Essays
  • Good Essays

    9. Two boxes, of mass 8 kg and 5 kg, respectively, are connected by a string. The 5 kg box is pulled to the right by a second string with a tension force of T = 40N. What is the tension in the connecting string?…

    • 2368 Words
    • 10 Pages
    Good Essays
  • Satisfactory Essays

    Practice Quiz

    • 5122 Words
    • 42 Pages

    2. 6 m/s 3. 6 kg 4. d v⊃ = 0 5. 6 kg 6.…

    • 5122 Words
    • 42 Pages
    Satisfactory Essays
  • Powerful Essays

    Wooden Block Lab

    • 865 Words
    • 4 Pages

    After that, we made sure there was enough room for the hanger to fall freely before hanging the thread over the pulley. Next, we varied the hanger height while maintaining the same mass. We measured the height at which the hanger dropped and the mass of the block and hanger. We recorded the block movement in films from various heights. Before moving on to the other videos, we examined the first one to guarantee accurate results.…

    • 865 Words
    • 4 Pages
    Powerful Essays
  • Good Essays

    Sum of the weights of the weight and the rope, where all weights are in the same units.…

    • 883 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Homework #2 Solutions

    • 1721 Words
    • 7 Pages

    Three boxes labeled A, B and C with masses m, m and M (M > m), respectively, are attached with ideal massless strings as shown in the figure below. The string goes through an ideal pulley. Neglect friction and air resistance. Rank from largest to smallest and explain: (a) The acceleration of each box and the acceleration of gravity. (b) The net force on each box. (c) The tension in each string and the weight of box C. SOLUTION: The free-body diagrams are drawn on the figure to the right. (a) The acceleration of all boxes is the same. Their acceleration is less than g. aA = aB = aC < g (b) The net force on an objects A and B is…

    • 1721 Words
    • 7 Pages
    Satisfactory Essays
  • Powerful Essays

    Formal Lab Report

    • 2070 Words
    • 9 Pages

    m2= experiment weight- blank weight To find the m1 in Equation 1 and Equation 2 it can be seen in Equation 4.…

    • 2070 Words
    • 9 Pages
    Powerful Essays
  • Good Essays

    Midterm Cheat Sheet

    • 1017 Words
    • 5 Pages

    The tension T is due to a taut, massless string. It is directed along the string.…

    • 1017 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    Mass and Kinetic Energy

    • 965 Words
    • 4 Pages

    A 15 kg uniform disk of radius R = 0.25 m has a string wrapped around it, and a m = 3 kg weight is hanging on the string. The system of the weight and disk is released from rest.…

    • 965 Words
    • 4 Pages
    Powerful Essays
  • Good Essays

    Lab 5: Weightlifting

    • 622 Words
    • 3 Pages

    We then used the following equation W = mg to calculate the weight of the barbell.…

    • 622 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    Live Life

    • 330 Words
    • 2 Pages

    3. Place the mass on the floor beside the meter stick. Hold the force meter parallel to the wall. Lift the mass vertically at a constant speed to the 0.50 m mark. Make sure the mass does NOT touch the wall…

    • 330 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Astronomy

    • 1166 Words
    • 5 Pages

    of 2 kg and the other with a mass of 3 kg, a) the 2-kg…

    • 1166 Words
    • 5 Pages
    Satisfactory Essays
  • Better Essays

    applied load. There will be compression at the top and tension at the bottom of the top…

    • 1039 Words
    • 5 Pages
    Better Essays

Related Topics