Preview

Physics Cantilever Lab

Powerful Essays
Open Document
Open Document
1246 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Physics Cantilever Lab
Independent Assessment Physics Lab (SL): Cantilever Flexion
Cherno Okafor
Mr. Ebrahimi
SPH4U7
October 21st, 2012

Introduction

Purpose: The purpose of this Physics Lab is to investigate what factors determine the amount of flexion of the cantilever. Hence, the objective is to establish a relationship between the length of a cantilever, which may give some insight into the physics of cantilevers.

Hypothesis: If one increases the length of a cantilever, one would expect there to be an increase in deflection/flexion of the cantilever. Similarly, if one increases the mass of the load, one would expect there to be an increase in the deflexion/flexion of the cantilever. In addition, I predict that proportionality will also occur between the independent and dependent variables. If the length of the cantilever doubles, it is expected that the flexion/deflexion would also double. Similarly, if the mass of the load doubles, the deflexion/flexion would also double.

Variables: In this investigation, I chose two variables: the length of the cantilever and the mass of the load. First, I chose to measure the effect of the length of the cantilever on its deflection when loaded with a constant mass because I knew from prior experience that there was some relationship between the two variables. * Independent Variable: The length of the cantilever in metres, which will be varied by changing the length of the yardstick functioning as a cantilever that extends over the edge of a table. This will be measured indirectly by measuring the length of the portion of the yardstick not in use and subtracting that from the entire length of the yardstick. The other independent variable is the mass loaded onto the cantilever, which will be controlled by initially using the same mass for each trial, then for the second part, changing the mass of the load by increasing and decreasing the mass, and subsequently investigating what the relationship is between load mass and

You May Also Find These Documents Helpful

  • Satisfactory Essays

    Physics Lab Questions

    • 263 Words
    • 1 Page

    n a deep dive, a whale is appreciably compressed by the pressure of the surrounding water. What happens to the whale’s density? The whales density increases so its not compressed by the waters pressure.…

    • 263 Words
    • 1 Page
    Satisfactory Essays
  • Better Essays

    AM 317 Experiment 1

    • 1994 Words
    • 14 Pages

    Deflections of a beam are important to be able predict the amount of deflection for a given loading situation. This experiment addresses determining the yield point for a material to fail, so the stress in the material does not have to reach to that point. This is where understanding beam deflection becomes a useful tool. This experiment is using beam deflection theory to evaluate and compare observed deflection per load values to theoretical values. Beam deflection experiment done by four parts. Part 1 -Simple Supported Bean, part 2-Cantilever Beam, part 3-The Principle of Superposition, and Part 4-Maxwell’s Reciprocity Theorem. For part 1 and 2 beam dimensions were recorded and are moment of inertia (I) was calculated using the following formula I=bh3/12.for part1, maximum permissible loads for mid-span and quarter-span were calculated. For part 2 maximum permissible loads for mid-span and end of the cantilever beam were calculated. For both parts different loads were applied and deflections were recorded. After calculating average modulus of elasticity for simple supported beam, which was approximately (-27.6*10^6 psi), it was compared to modulus of elasticity chart. The result indicates that the beam simple supported beam was made of Wrought iron. For cantilever beam, average modulus of elasticity were calculated, which was approximately (9148056.3), and compared with young’s modulus chart .the result indicate that cantilever beam was made of Aluminum. Part 3 reference point was chosen, single concentrated load at other point was applied and deflection was recorded at reference point. Same procedure was applied at another point on the beam and deflection was recorded at reference point. Finally, both loads were applied and deflection was recorded at the…

    • 1994 Words
    • 14 Pages
    Better Essays
  • Good Essays

    Experiment Plan

    • 1875 Words
    • 8 Pages

    * Independent Variable: I will be changing the ball size. * Dependent Variable: The height of the bounce. * Controlled Variable: The height that I will drop the balls at.…

    • 1875 Words
    • 8 Pages
    Good Essays
  • Good Essays

    Physics Motion Lab

    • 859 Words
    • 4 Pages

    To graphically analyze motion, two graphs are commonly used: Displacement vs. Time and Velocity vs. Time. These two graphs provide significant information about motion including distance/displacement, speed/velocity, and acceleration. The displacement and acceleration of a moving body can be obtained from its Velocity vs. Time graph by respectively finding the area and the slope of the graph.…

    • 859 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Lab report Experiment AM1

    • 246 Words
    • 2 Pages

    The Experimental Bending moment was obtained by multiply the displayed force and perpendicular distance between load cell and the “cut” (moment arm) and the perpendicular distance between load cell and the “cut” is 0.125m throughout the experiment.…

    • 246 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    Physics 2 Lab

    • 631 Words
    • 3 Pages

    Our procedure for this lab was very simple. We had to determine a correct MATLAB code to write. We inputted a code into MATLAB and received figure 1.1, the pot of the electric filed of a positive point charge. Our next goal was to plot the graph of the x position of a test charge in the presence of two positive charges versus the total electric filed at that point, we ended up with figure 1.2. We then repeated this plot, but with a positive and negative charge (figure 1.3). Lastly, we proceeded to plot the electric filed with two positive charges using a vector field plot (figure 1.4); and it was repeated for a positively and negatively charged particle in order to receive figure 1.5.…

    • 631 Words
    • 3 Pages
    Good Essays
  • Better Essays

    “Beams are long straight members that are subjected to loads perpendicular to their longitudinal axis and are classified according to the way they are supported”[1]. When a beam is subjected to an external load there are unseen internal forces within the beam that one must be aware of when implementing it into any design or structure. These internal forces create stress and strain that could result in failure or deformation. This lab looked at how an aluminum cantilevered beam performed under symmetric and unsymmetrical bending as well as the stresses and strains developed as a result.…

    • 1242 Words
    • 5 Pages
    Better Essays
  • Powerful Essays

    The experiment was conducted to investigate the deflections of the tip of a cantilever when loaded transversely in directions not coinciding with the principal axes of the cross section, and also to determine:…

    • 1440 Words
    • 16 Pages
    Powerful Essays
  • Powerful Essays

    An investigation into beam bending and superposition. Being able to analyse how beams bend is an essential tool for all engineers. By using mathematics and material properties, engineers are able to compute structural deformation thus verifying a structures fitness for use. In this experiment a simply supported beam of aluminium is loaded with point forces in three different cases. A clock gauge is positioned in the middle of the beam to measure the deflection. The results of a complex arrangement of forces can be deduced by the superposition of more simple cases. Superposition is possible only when the response of the structure is linear, e.g. when deflection is directly proportional to the applied load. Also the experimental and theoretical deflections of the beam will be compared and a percentage error obtained. There was a second test performed in this investigation demonstrating the influence the 2nd moment of area, also known as the second moment of inertia, had on the load carrying capacity of the beam. The results from test 1 show that it is possible to deduce the deflection of the beam when loaded with point forces by superposition. Results from test 2 show that the deflection of a beam is influenced greatly by its moment of inertia, i.e. with a greater value of inertia there is a smaller deflection.…

    • 2138 Words
    • 9 Pages
    Powerful Essays
  • Satisfactory Essays

    The initial test demonstrated a single joint on a rigid frame. A weight was applied to a suspended beam, applying pressure to the hinge tube. Pressure on the tube was measured with a pressure gauge, and the external torque acting on the joint was calculated based on digital pictures taken of the model. Later, he constructed a more complex model with multiple joints, tested its strength and flexibility, and also compared it to other forms of robotic joints and rotary actuators. Later, he experimented with adding additional tubes to a joint.…

    • 349 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    Accelaration of an object

    • 2032 Words
    • 9 Pages

    In dynamics, the properties of force and mass are necessary traits which define the acceleration of an object. This theory is relative to Newton’s second Law of Motion which states “the mass of an object affects the way that it moves when acted upon by one or more forces” (Lofts, 2012). In the Experimental Investigation carried out,…

    • 2032 Words
    • 9 Pages
    Powerful Essays
  • Powerful Essays

    Structural dynamics

    • 3650 Words
    • 17 Pages

    This report will look at conceptual design for earthquake resisting structures. It will look in depth at a specific structure under a calculated earthquake. The structure will be created as a model using LUSAS modeling software and analyzed to show the building’s behavior under static and dynamic loadings. After an initial model has been created and analyzed, changes will be made to it and re-evaluated to show how changes to the structure cause it to behave differently.…

    • 3650 Words
    • 17 Pages
    Powerful Essays
  • Powerful Essays

    Vibration is considered with the oscillating motions of the bodies and the forces associated with them. Objectionable vibrations in a machine may cause the loosening of the parts, its malfunctioning or its eventual failure. The study of the vibration is to determine its effect on the performance and safety of the system under consideration. The performance of many instruments depends on the proper control of the vibration characteristics of the devices. Energy may be stored in the mass and spring, and dissipated in the damper in the form of heat. The mass may gain or lose kinetic energy in accordance with the velocity change of the body. The spring possesses elasticity and is capable of storing the potential energy under deformation.…

    • 12682 Words
    • 51 Pages
    Powerful Essays
  • Powerful Essays

    pom project

    • 1540 Words
    • 7 Pages

    A tennis ball and a rubber band were randomly chosen and a catapult was used to perform the experiment ( Fig. 1). The catapult was aligned with the edges of the table to make sure that it was shooting straight. Since even the slightest movement could affect our results dramatically, clamps were used to hold the catapult firm against the table. 4 factors at 3 levels were chosen and the results are shown in…

    • 1540 Words
    • 7 Pages
    Powerful Essays
  • Powerful Essays

    The aim of the experiment is to understand the concept of the structural engineering studies in simpler way, which is through an experiment. At the end of the experiment, the bending moment at any given point along a simply supported can be calculated. How the loading of given set of condition could affect the bending moment also can be understand at the end of the experiment.…

    • 1818 Words
    • 7 Pages
    Powerful Essays