Preview

Mechanical Testing of Materials

Powerful Essays
Open Document
Open Document
3265 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Mechanical Testing of Materials
Experiment 2
A Characterization of Cast Iron, 1045 Annealed and Cold-Rolled Steel, 2024-T4 Aluminum, PMMA, and PP through Tensile, Impact, and Fracture-Toughness Tests.
Aibar Nurmukhanov
MSE 308, Section AB3
Date Due: 02/23/2012
Date Received: _________

ABSTRACT
The experiment observed the mechanical deformation process of different materials by three tests: tensile test, impact test, and fracture-toughness test. The materials evaluated in the tensile test were annealed 1045 steel, cold rolled 1045 steel, 2024-T4 aluminum and cast iron. 2024-T4 aluminum is concluded to be most ductile (25.7 % reduction in area) and cast iron the most brittle (123 MPa). Effects of cold rolling in 1045 steel are apparent, as it has the highest strength among the materials tested (402 MPa yield strength). Impact test measured the impact energy of 1045 steel, 2024 aluminum, polypropylene (PP), and poly(methyl methacrylate) (PMMA). This test also observed the effect of temperature on material ductility. The fracture-toughness test was performed on 2024-T4 aluminum to determine a KIC of 35.3 MPam. From the experiment, it was found that the brittle-ductile transition temperature of PP is between 0 0C and room temperature, whereas the transition temperature of 1045 steel is between 25 0C and 100 0C.

INTRODUCTION The foundation of Materials Science lies in characterization of a material’s properties. Among those properties the greatest interest lies in the strength of materials, being the most basic requirement for any kind of construction. This lab aims first to describe the strength of 1045 annealed and cold-rolled steel, 2024-T4 aluminum, and cast iron through tensile testing. This includes characterization of yield strengths, modulus of elasticity, ultimate tensile strength, and fracture strength for each material. An emphasis is placed on elastic-plastic deformation in terms of ductility and how temperature and fatigue can affect this transition. Elastic and plastic

You May Also Find These Documents Helpful

  • Good Essays

    Aluminum Foil Lab

    • 447 Words
    • 3 Pages

    The purpose of this lab is to determine which brands of heavy duty and regular aluminum are the best to buy based on their price and their thickness.…

    • 447 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Lab 4 Memo

    • 521 Words
    • 3 Pages

    This lab was performed to fully comprehend the temperature dependency of the fracture toughness of the Aluminum and Steel. It was also executed to discover the ductile-brittle transition of each.…

    • 521 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    Steel is possibly the strongest and most widely used alloy throughout the world (as graph on Pg 2 depicts), and its properties can be dramatically varied with slight changes to its chemical makeup. A significant factor that is used to increase the strength of ‘Reynolds 853’ is the process with which it is created.…

    • 4317 Words
    • 18 Pages
    Powerful Essays
  • Good Essays

    Introduction: The objective of the lab was to determine the amount of energy absorbed by a material during fracture. Another goal of this lab was to learn how to use impact-testing equipment and procedures. The lab materials included a specimen, which consists of a bar of either 6061-T6 Aluminum or 2024 Aluminum having a notch that was machined and an apparatus made up of a pendulum to impact the notched specimen.…

    • 656 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Steel 1045 Final Report

    • 1478 Words
    • 6 Pages

    Out of the three materials tested, the steel 1045 exhibited the most elastic properties, with it being able to deform elastically for a greater amount of stress than for the other specimens, as indicated by its stress-strain curve as shown in figure 1, and further supported by it having the highest modulus of elasticity of all three specimens, as shown in table 2. The mild steel specimen had the second greatest modulus of elasticity, and the aluminium specimen had the lowest modulus of…

    • 1478 Words
    • 6 Pages
    Better Essays
  • Good Essays

    Bone Mechanics

    • 504 Words
    • 7 Pages

    In this lab the strain response of two different materials were measured as stress was applied to them. The materials were an aluminum rod and a chicken bone. Strain (ᵋ) is the change of length of the material over the initial length.…

    • 504 Words
    • 7 Pages
    Good Essays
  • Better Essays

    The alloy steel is a material very resistant capable of withstanding forces of grate magnitude either tension or compression. Steel is not an element; it is an alloy of iron containing less than 1% carbon to make it stronger. The process of steelmaking had multiple changes in the last century to meet regulations based on the political, social and technological atmosphere, especially in the last decades since global warming became the most important factor. Steelmaking involves three steps which are melting, purifying and alloying. In the alloying process it is mixed with other elements such as manganese, nickel cobalt; depending on the desired alloy properties. The density of the alloy steel is 7850 kg/m^3, the elastic modulus is 190-210 GPa and the yield strength is 366-1793 MPa. These properties make the alloy steel the most suitable material for the Tomcat from an engineer’s perspective.…

    • 1044 Words
    • 5 Pages
    Better Essays
  • Good Essays

    Syllabus Spring 2013

    • 638 Words
    • 3 Pages

    Course Description: Important mechanical properties of materials engineering such as yield strength and fracture toughness experimentally…

    • 638 Words
    • 3 Pages
    Good Essays
  • Powerful Essays

    A tensile test was performed on a 4140 steel sample and the axial and transverse strains were measured. Data points were collected at incremental loads and graphed to determine the elastic modulus (30.4 x 106). Poisson’s ratio was also calculated from the dataset and determined to be 0.29. These experimental values agree closely (within 2%) to the textbook values of the steel sample. A sample of 7075 Aluminum was used in a cantilever beam test. Intermediate and end loads were place on the sample and the strain was measured at various distances from the loads. Using the dataset from the individual loads, the superposition strain was calculated and agreed within 7% of the experimental strain with both loads. From the measured deflection of the cantilever beam and the dataset, Young’s Modulus for the aluminum sample was determined to be 9.1x106 psi which agrees within 8% of the textbook value.…

    • 4723 Words
    • 19 Pages
    Powerful Essays
  • Satisfactory Essays

    INTRODUCTION This is report analyses raw data from tensile test of polyethylene and polystyrene materials; thus drawing comparisons with published data of mechanical properties of polyethylene and polystyrene materials. Also how chemical structures affects mechanical properties of polyethylene and polystyrene. Background theory Mechanical properties of a material relate to its resistance to changes, e.g. when loaded, deformed, rise in temperature etc. This depends on the structure and…

    • 591 Words
    • 3 Pages
    Satisfactory Essays
  • Powerful Essays

    Comparing a material's initial treatment and the microstructures that are formed from different processes, an engineer can accurately understand why certain treated materials of the same family can be stronger than another. In this experiment annealed and cold-worked specimens of AISI 1018 STEEL are used, along with a Hardness tester, a grinding and polishing process, and a micrograph to see the grain structure of the steel. After putting a specimen through a process using each piece of equipment, grain structures of differently treated materials can be compared. The Hardness Tester gives a value of the strength of a material and in this case the annealed steel was 48.6 HRB, untreated steel is usually around 73 HRB, and the cold rolled steel was 90.8 HRB, in the Rockwell scale. These strength values can then be used comparatively with each of the steel's microstructures. The grinding and polishing processes, along with a solution used to etch the surface of the steel, is then used to prepare the material for the micrograph. The steel was first prepared with four types of increasingly fine sandpaper and then polished with four types of increasingly fine polycrystalline diamond suspension fluid and paper. A 2% Nital solution is then used to etch the surface, or to make the grains of the steel more prominent. After this, a micrograph is used to see the grain structures of the differently treated steel and compare the different proportions of ferrite, pearlite, and others such as cementite. The grain structures for each steel varied on these proportions. The annealed steel was made up of 77% ferrite, which is innately soft and roughly 20% pearlite which is much harder. From simply visual interpretations, the cold rolled steel possessed a far higher content of pearlite, despite initial predications that the samples would contain similar…

    • 3255 Words
    • 14 Pages
    Powerful Essays
  • Good Essays

    Blade Runner

    • 15696 Words
    • 153 Pages

    Aluminium is very lightweight, yet strong and corrosion resistant Steel is used for bridges, tools and machinery, bolts, screws and nails, reinforcing inside concrete structures, engines, vehicle bodies, trains and their rails, ships, and “tin” cans. Its lightweight strength is perfect for aircraft construction.…

    • 15696 Words
    • 153 Pages
    Good Essays
  • Powerful Essays

    Tacoma Narrows Bridge

    • 2182 Words
    • 9 Pages

    * Jones, D. R. Engineering Materials 3: Materials Failure Analysis. New York: Pergaman P, 1993.…

    • 2182 Words
    • 9 Pages
    Powerful Essays
  • Better Essays

    The test has following objectives, to check the hardenability of different metals, the effect of carbon on the material’s hardenability and the comparison of the link between the microstructure and the cooling rate [1].…

    • 928 Words
    • 4 Pages
    Better Essays
  • Better Essays

    Notched-bar impact test of metals provides information on failure mode under high velocity loading conditions leading sudden fracture where a sharp stress raiser (notch) is present. The energy absorbed at fracture is generally related to the area under the stress-strain curve which is termed as toughness in some references. Brittle materials have a small area under the stress-strain curve (due to its limited toughness) and as a result, little energy is absorbed during impact failure. As plastic deformation capability of the materials…

    • 2517 Words
    • 11 Pages
    Better Essays