Preview

Lab Report

Satisfactory Essays
Open Document
Open Document
1635 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Lab Report
City University of Hong Kong

Dept. of Physics & Materials Science

AP2104 Mechanics of Solids

Laboratory Manual

Experiment 1 Pure Bending of a Beam

Experiment 2 Torsional Deformations

Experiment 3 Yield Criteria for Ductile Materials under Plane Stresses

Experiment 1

Pure Bending of a Beam

Objective

1. To examine the stresses at various positions of the beam under a constant load of pure bending.

2. To determine the curvature of deflection of the beam.

Introduction

1. Pure Bending and Nonuniform Bending

When analyzing beams, it is often necessary to distinguish between pure bending and nonuniform bending. Pure bending refers to flexure of a beam under a constant bending moment. Therefore, pure bending occurs only in regions of a beam where the shear force is zero ( because V = dM/dx ). In contrast, nonuniform bending refers to flexure in the presence of shear forces, which means that the bending moment changes as we move along the axis of the beam. As an example of pure bending, consider a simple beam AB loaded by two couples M1| having the same magnitude hut acting in opposite directions (Fig. 1a). These loads produce a constant bending moment M = M1 throughout the length of the beam. Note that the shear force V is zero at all cross sections of the beam. [pic] [pic] Fig. 1 (a) Simple beam in pure bending. (b) Cantilever beam in pure bending

Another illustration of pure bending is given in Fig. 1b, where the cantilever beam AB is subjected to a clockwise couple M2 at the free end. There are no shear forces in this beam, and the bending moment M is constant throughout its length. The bending moment is negative (M = - M2). The symmetrically loaded simple beam of Fig. 2a is an example of a beam that is partly in pure bending and partly in nonuniform bending, as seen from the shear-force and bending-moment diagrams (Figs. 2b and c). The central

You May Also Find These Documents Helpful

  • Powerful Essays

    EGR 315 Final Paper

    • 2079 Words
    • 9 Pages

    The shear stress distributing in a beam depends on how Q/b varies as a function of y1. For a beam with a rectangular cross sectional area, subjected to a shear force V and a bending moment M. as a result of the bending moment a normal stress is developed on a cross section, which is compression above the neutral axis and it is tension below the neutral axis. To investigate the shear stress at a distance y1 above the neutral axis. Then dA=bdy, so equation 2 becomes…

    • 2079 Words
    • 9 Pages
    Powerful Essays
  • Satisfactory Essays

    Lab report Experiment AM1

    • 246 Words
    • 2 Pages

    In this lab report we show the basic methods of measuring bending moment at the “cut” assuming only simply supported beam with point loads (showed in figure 1) and illustrate the relationship among bending moment and distance between reaction forces and the cut (a and l in figure 2).…

    • 246 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    A 5.0 kg and 2.0 m beam is hinged to a wall and supported by a thin cable attached to a building. The beam is supported at an angle of 400 as showed in the figure and used to support a 10 kg sign.…

    • 1013 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    Asymmetrical bending is bending couples acting in a plane of symmetric. If loads do not act in plane of symmetry, this leads to deflection in a plane perpendicular to the loading plane as well as in the loading plane. This coupling does not occur if the loading is in principal plane.…

    • 1440 Words
    • 16 Pages
    Powerful Essays
  • Powerful Essays

    A tensile test was performed on a 4140 steel sample and the axial and transverse strains were measured. Data points were collected at incremental loads and graphed to determine the elastic modulus (30.4 x 106). Poisson’s ratio was also calculated from the dataset and determined to be 0.29. These experimental values agree closely (within 2%) to the textbook values of the steel sample. A sample of 7075 Aluminum was used in a cantilever beam test. Intermediate and end loads were place on the sample and the strain was measured at various distances from the loads. Using the dataset from the individual loads, the superposition strain was calculated and agreed within 7% of the experimental strain with both loads. From the measured deflection of the cantilever beam and the dataset, Young’s Modulus for the aluminum sample was determined to be 9.1x106 psi which agrees within 8% of the textbook value.…

    • 4723 Words
    • 19 Pages
    Powerful Essays
  • Better Essays

    Boomilever Project

    • 1426 Words
    • 5 Pages

    A cantilevered beam is what of which is supported on one end (usually a fixed support) and end is left hanging on the other end (Hibbeler, 2014). Cantilevered beams are able to support a load on the free-end. Cantilever trusses are popular in bridge and building architecture and possess many different uses. A cantilever truss with only a fixed end and a free end supporting a load and the negative y direction will translate the load across the supporting cantilever member and will thus have a positive y reaction at the fixed support since the sum of all reactions in a truss must equal zero (Hibbeler, 2014). Often times…

    • 1426 Words
    • 5 Pages
    Better Essays
  • Powerful Essays

    An investigation into beam bending and superposition. Being able to analyse how beams bend is an essential tool for all engineers. By using mathematics and material properties, engineers are able to compute structural deformation thus verifying a structures fitness for use. In this experiment a simply supported beam of aluminium is loaded with point forces in three different cases. A clock gauge is positioned in the middle of the beam to measure the deflection. The results of a complex arrangement of forces can be deduced by the superposition of more simple cases. Superposition is possible only when the response of the structure is linear, e.g. when deflection is directly proportional to the applied load. Also the experimental and theoretical deflections of the beam will be compared and a percentage error obtained. There was a second test performed in this investigation demonstrating the influence the 2nd moment of area, also known as the second moment of inertia, had on the load carrying capacity of the beam. The results from test 1 show that it is possible to deduce the deflection of the beam when loaded with point forces by superposition. Results from test 2 show that the deflection of a beam is influenced greatly by its moment of inertia, i.e. with a greater value of inertia there is a smaller deflection.…

    • 2138 Words
    • 9 Pages
    Powerful Essays
  • Satisfactory Essays

    Bending Bridges

    • 351 Words
    • 2 Pages

    Aim: To find out how weight and different placements of the weight affect the bending of the beam.…

    • 351 Words
    • 2 Pages
    Satisfactory Essays
  • Better Essays

    Materials Lab Report

    • 1581 Words
    • 7 Pages

    The loading beam (Silicon Carbide) is lowered at 10mm per second onto the plate. The load is applied until the glass breaks against the two supports (also of Silicon Carbide). The values for maximum load and deflection are recorded from the apparatus. Steps 1-4 are repeated for ten different samples. With a piece of emery paper scratch the surface of the glass slides along the width in the centre on one side only of a glass sample (see Figure 2)…

    • 1581 Words
    • 7 Pages
    Better Essays
  • Better Essays

    such that there was vertical load at the centre of the beam and horizontal load at the top of a…

    • 1039 Words
    • 5 Pages
    Better Essays
  • Satisfactory Essays

    Maximum bending moment is where the force diagram crosses 0, at 8m and between 2m and 6m.…

    • 2039 Words
    • 10 Pages
    Satisfactory Essays
  • Powerful Essays

    Strain Rosette

    • 1744 Words
    • 10 Pages

    This experiment is used to measure the strains using strain gauges positioned in 3 different axis surrounding a point on a cantilever beam.…

    • 1744 Words
    • 10 Pages
    Powerful Essays
  • Good Essays

    Fig. 4 shows that specimens subjected to minor axis bending failed at considerably lower load than those subjected to major axis bending. Rate of reduction of ultimate load is more pronounced in the case of minor axis bending. For example, the rate of reduction of ultimate load for S500 specimen, when e/xo increases from 0 to 2.8, is 5.7% and 56% for the specimen subjected to major axis bending and minor axis bending respectively. The corresponding rate of reduction of strength for S1100 specimens are 6.15% and 23.8% respectively. At larger eccentricity ratios (from 1.4 to 2.1), the curves become flatter…

    • 865 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Beam Experiment

    • 890 Words
    • 4 Pages

    To determine the reactions of the beams by (a) the experimental set-up and (b) by using the principles of statics and method of consistent deformation…

    • 890 Words
    • 4 Pages
    Satisfactory Essays
  • Powerful Essays

    Bending moment is a rotational force that occurs when force is applied at any place away from at any point perpendicularly. A bending moment will occur when a moment is applied to a system so that the system will bend. According to Hibbeler, beams develop different internal shear force and bending moment from one point to another along the axis of the beam due to applied loadings. A bending moment experiments may be vary according to experiments. The moment is calculated and measure as force times distance of the force applied to the pivot point. As a result, the bending moment will have newton-metres (N.m) as its unit.…

    • 1818 Words
    • 7 Pages
    Powerful Essays