Preview

Classification Test for Organic Halides

Better Essays
Open Document
Open Document
1539 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Classification Test for Organic Halides
CLASSIFICATION TESTS FOR ORGANIC HALIDES

James Anand L. Regala, Sabrina Nicolle G. Sarte, Ann Michelle Siao,
Michael Sibulo, Victoria Tan
Group 8 2C Pharmacy Organic Chemistry Laboratory

ABSTRACT
This experiment is done to classify organic halides. Most organic halides are synthetic and are not flammable. One way to classify organic halides is by classifying its -carbon atom as primary, secondary or tertiary. If the -carbon is attached to one R group, it is then primary. If the -carbon is attached to R groups, it is then secondary, and if attached to 3 R groups, it is then said to be tertiary. But this is only applicable if the -carbon is tetragonal or sp3 hybridized. Another way of classifying organic halides is by differentiating its SN1 and SN2 mechanisms. SN1 is a substitution reaction and the rate is determined by the organic halide and the nucleophile. SN1 is also a two-step reaction. First, the halide moves out. Then, the nucleophile approaches and binds with the alkyl group. SN2 is also a substitution reaction. But, instead of a two-step reaction, SN2 is only a one-step reaction. Its rate is determined by both the organic halide and the nucleophile. Several organic halide were used to complete this experiment.
INTRODUCTION
An alkyl halide is another name for a halogen-substituted alkane. The carbon atom, which is bonded to the halogen atom, has sp3 hybridized bonding orbitals and exhibits a tetrahedral shape. Due to electronegativity differences between the carbon and halogen atoms, the σ covalent bond between these atoms is polarized, with the carbon atom becoming slightly positive and the halogen atom partially negative. Halogen atoms increase in size and decrease in electronegativity going down the family in the periodic table. Therefore, the bond length between carbon and halogen becomes longer and less polar as the halogen atom changes from fluorine to iodine. [1]
The Beilstein test is a simple chemical test used in chemistry as a



References: [1] http://www.cliffsnotes.com/study_guide/Introduction-to-Alkyl-Halides.topicArticleId-23297,articleId-23251.html [2] http://kimiagar2010.blogspot.com/2010/04/beilstein-test-for-aliphatic-halide.html [3] http://chemistry.gravitywaves.com/CHE301/Alkyl%20Halide%20Classification%20Tests.htm Laboratory Manual in Organic Chemistry

You May Also Find These Documents Helpful

  • Satisfactory Essays

    The purpose of part 1 of the lab is to prepare 2-Bromobutane using SN1 reactions. The purpose of part 2 of the lab is to determine the relative reactivity of alkyl halides under SN1 conditions.…

    • 440 Words
    • 2 Pages
    Satisfactory Essays
  • Better Essays

    References: 1) Weldegirma, S. Experimental Organic Chemistry Laboratory Manual: CHM 2210l and CHM 2211L Fall 2011/ Spring 2012; Mason OH, 2010; pp 4-8.…

    • 842 Words
    • 4 Pages
    Better Essays
  • Better Essays

    Organic Lab 7

    • 1806 Words
    • 8 Pages

    Alkyl halides are compounds in which a halogen atom replaces a hydrogen atom of an alkane. Alkyl halides are classified as primary, secondary or tertiary depending on the number of alkyl substituents directly attached to the carbon attached to the halogen atom. The purpose of this lab was to properly prepare t-butyl chloride from t-butyl-alcohol in a concentrated hydrochloric acid. The reaction occurs through a nucleophilic substitution, which is when a nucleophile replaces the leaving group in the substrate. In this lab, the hydroxyl group of t-butyl alcohol is replaced by a chlorine atom. The reaction proceeds through an SN1 mechanism (Weldegirma 38-41).…

    • 1806 Words
    • 8 Pages
    Better Essays
  • Better Essays

    Alcohol and Ir Spectrum

    • 1927 Words
    • 8 Pages

    Background: Alcohols are capable of being converted to metal salts, alkyl halides, esters, aldehydes, ketones, and carboxylic acids. In this experiment the conversion from alcohol to alkyl halides was investigated. Alkyl halides are a group of chemical compounds derived from alkanes containing one or more halogens. They are used as flame retardants, refrigerants, propellants, solvents, and pharmaceuticals. As a group, students convert three alcohols to alkyl halides under acidic conditions and record the 13C NMR spectrum in each case. The reaction that takes place in the conversion is a bimolecular nucleophilic substitution, or SN2 reaction. Alcohols do not undergo the same SN2 reactions commonly observed with alkyl halides. There are four aspects that determine the rate of the SN2 reaction: nucleophile, substrate, solvent and the leaving group. This reaction requires a lone pair from a nucleophile to donate an electron-pair in the formation of a chemical bond; it then attacks the bonds to an electrophilic…

    • 1927 Words
    • 8 Pages
    Better Essays
  • Good Essays

    Acetic

    • 379 Words
    • 2 Pages

    In the first part of this experiment acetic anhydride was used to prepare acetanilide which could then be readily brominated to form a mono-brominated product, with the bromine positioned at either the ortho, meta or para position on the aromatic ring. Acetic anhydride is very reactive towards nucleophiles and this reactivity is the result of the difference in electronegativities of the carbon and oxygen atoms that are bonded in acetic anhydride. This difference in electronegativities causes one of the carbonyl groups in acetic anhydride to break its carbon-oxygen double bond with the oxygen atom taking the pair of electrons from the pi bond and results in a negative charge on oxygen and a positive charge on carbon. The positive charge on carbon is then stabilized by the donation of a lone pair of electrons from oxygen, which is attached to both of the carbonyl groups in acetic anhydride, and results in the formation of an O=C bond with the oxygen containing a positive charge. The formation of the oxygen with the positive charge causes the electrons in C-O bond to be pulled more closely to the oxygen and results in the carbon on the unaltered carbonyl group to be very electron deficient and this is the cause of the reactivity of acid anhydrides.…

    • 379 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Introduction: This lab experimented on the reactions of the chemicals that undergoes SN1 or SN2 reaction. Nine different compounds were given to be examined with two reagents - NaI in acetone and AgNO3 in ethanol. The SN1 reaction happens in AgNO3 in ethanol reagents, and SN2 reaction is in NaI in acetone.…

    • 1152 Words
    • 7 Pages
    Good Essays
  • Better Essays

    The objective of this laboratory experiment is to study both SN1 and SN2 reactions. The first part of the lab focuses on synthesizing 1-bromobutane from 1-butanol by using an SN2 mechanism. The obtained product will then be analyzed using infrared spectroscopy and refractive index. The second part of the lab concentrates on how different factors influence the rate of SN1 reactions. The factors that will be examined are the leaving group, Br – versus Cl-; the structure of the alkyl group, 3◦ versus 2◦; and the polarity of the solvent, 40 percent 2-propanol versus 60 percent 2-propanol.…

    • 1659 Words
    • 7 Pages
    Better Essays
  • Satisfactory Essays

    Purpose: Alkyl halides can be prepared from alcohols by reacting them with a hydrogen halide, HX (X = Cl, Br, or I). The mechanisms of acid-catalyzed substitution of alcohols are termed SN1 and SN2. The “S” stands for substitution, the “N” stands for nucleophilic, and the “1” or “2” stand for unimolecular or bimolecular. Secondary alcohols react with hydrogen halides by both SN1 and SN2 mechanisms, primary alcohols react by SN2 and tertiary alcohols by SN1. Tertiary alcohols react readily with HX alone to form the alkyl halide, while secondary and primary alcohols require the presence of zinc chloride or heat. In an SN1 reaction, the protonated alcohol loses a water molecule to form a carbocation intermediate in the rate-determining step. The carbocation is then rapidly attacked by the halide ion (X) to form the alkyl halide. Since tertiary alcohols form more stable carbocation intermediates than primary and secondary alcohols, tertiary alcohols are the most likely to follow the SN1 pathway. In SN1 reactions, the formation of a carbocation can lead to rearrangements. Also, elimination to form an alkene can occur.…

    • 419 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Toxicant Scavenger Hunt and Toxicant Treatment Plan Reference List Cristina Garfield, Dianne Klabunde, April Wells, and Stephen Wood ENV/410 Environmental Toxicology January 11, 2013 Professor Niladri Sarker Toxicant Scavenger Hunt and Toxicant Treatment Plan Reference List Brandt, A. D. (1947). Industrial Health Engineering. John Wiley and Sons, Inc.…

    • 250 Words
    • 1 Page
    Satisfactory Essays
  • Satisfactory Essays

    Halide Ions Lab

    • 618 Words
    • 3 Pages

    Purpose: The purpose of this lab is to observe the reactions of halide ions with different reagents by mixing them together. Analyze data to determine characteristic reactions of each halide ion. Infer the identity of unknown solutions.…

    • 618 Words
    • 3 Pages
    Satisfactory Essays
  • Better Essays

    Formal Lab Report

    • 2135 Words
    • 9 Pages

    Synthesis of alkyl halides can be performed from a variety of starting materials and specific mechanisms: from alkenes by addition, from alkanes by substitution, and from alcohols via nucleophilic substitution. The reaction of alcohols with hydrogen halides, like HCl, HBr, and HI, would result to their corresponding alkyl halides and water. The formation of alkyl halides has different mechanisms, depending on the alcohol used for the synthesis. Tertiary alcohols react with hydrogen halides faster compared to the secondary and primary alcohols. Tertiary alcohols could react with hydrogen halides rapidly at room temperature, while the reaction of primary alcohols with hydrogen halides takes a longer time and should be at a high temperature.…

    • 2135 Words
    • 9 Pages
    Better Essays
  • Powerful Essays

    This lab consisted of the conversion of alcohols into alkyl halides through common substitution methods. These methods include SN1 and SN2 mechanism, both of which can occur for this type of reaction. For both reactions, the first step of protonation will be to add hydrogen to the –OH group and then the rest of the reaction will proceed according to the type of mechanism. SN1 reactions form a cation intermediate once the H2O group leaves, then allowing a halide (such as Br) to attack the positively charged reagent1. On the other hand, SN2 reactions are one-step mechanism in which no intermediate is formed and the halide attaches as the leaving group detaches1. Rearrangements of the product are possible during the SN1 mechanisms, but not for SN2 mechanisms. This lab will examine the reaction of 1-propanol and 2-pentanol with NaBr in H2SO4, in which the H2O acts as the leaving group and Br as the attaching nucleophile (1). After the reaction has taken place through reflux and distillation, the product is able to be examined through NMR and IR spectroscopy analysis. Finally, these graphs will help in determining the products of each reaction and the type of mechanism used.…

    • 2553 Words
    • 11 Pages
    Powerful Essays
  • Powerful Essays

    Cited: 1) 2) 3) Durst, H.D., Gokel, G.W., Experimental Organic Chemistry, 2nd ed., McGraw-Hill Inc., New York: 1987, pp 259-265. Bruice, P.Y., Organic Chemistry, 4th ed., Pearson Education, Inc., Upper Saddle River, New Jersey: 2004, pp 320. Silverstein, R.M., Bassler, G.C., Morrill, T.C., Spectrometric Identification of Organic Compounds, 4th ed., John Wiley & Sons, Inc., New York: 1963, pp 209-210.…

    • 2591 Words
    • 11 Pages
    Powerful Essays
  • Better Essays

    Theory: One of the methods of preparing alkyl halides is via the nucleophilic substitution reactions of alcohols. Alcohols are inexpensive materials and easy to maintain. However, they are a poor leaving group the OH group is a problem in nucleophilic substitution, this problem is fixed by converting the alcohol into H2O.…

    • 1160 Words
    • 5 Pages
    Better Essays
  • Powerful Essays

    Chem 121

    • 2107 Words
    • 9 Pages

    3. Alkyl halides, which contain a halogen atom X (X = F, Cl, Br, or I)…

    • 2107 Words
    • 9 Pages
    Powerful Essays