Preview

Blood Flow Unit 4

Good Essays
Open Document
Open Document
832 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Blood Flow Unit 4
Blood Flow
The Path blood takes through the body is a very interested one. In this essay you will heard about the path blood takes from the right femoral vein to lower lobe of the right lung via the pulmonary artery. If blood did not flow through the body we as humans could not function the way we currently do. Oxygenated blood is carried through the body by veins and arteries and this is what feeds the body so it can function (Thibodeau, Patton, 2008.).
Oxygenated blood is carried through the body by veins and arteries. The path blood take from the right femoral vein to lower lobe of the right lung via the pulmonary artery is as follows; we start in the right femoral vein which is located in the thigh and travel to the right external iliac vein. Blood from the femoral vein emptiness in the inferior vena cava but first must travel through the external iliac. The iliac vein joins with the inferior vena cava. The inferior vena cava takes deoxygenated blood form the lower limbs of the body to the right atrium (Thibodeau, Patton, 2008.). Following the inferior vena cava we travel in to the right atrium of the heart. The purpose of right atrium of the heart is to receive deoxygenated blood from the body through the inferior vena cava and pump it into the right ventricle (MedicineNet.com, 2012). Once we are ready to leave the right atrium we go into the right AV valve (AV is atrioventricular or cuspid, (Thibodeau, Patton, 2008.).The AV valve stops blood from flowing backwards and every time the heart beats the valve opens and closes. The AV valve allows blood to flow into the right ventricle. But before blood goes into the right ventricle it has to travel through the tricuspid valve. The tricuspid valve along with AV and SL are all structures that prevent blood from flowing backwards (Thibodeau, Patton, 2008.). So we now know that the right ventricle receives deoxygenated blood from the right atrium, but what we don’t already know is that the right ventricle sends the

You May Also Find These Documents Helpful

  • Good Essays

    There are 4 values that enforce 1-way traffic for blood. ~The 2 Semilunar Valves are the Aortic & Pulmonary Valves. They guard the bases of the large arteries issuing from the ventricles & prevent backflow into the associated ventricles. Each SL Valve is fashioned from 3 pocketlike Cusps & shaped roughly like a half-moon. The SL Valves open & close in response to differences in pressure. When the ventricles are contracting & intraVentricular pressure rises above the pressure in the aorta and pulmonary trunk, the SL valves are forced to OPEN and their cusps flatten against the arterial walls as the blood rushes past them. When the ventricles relax, the blood flows backward toward the heart, it fills the cusps & CLOSES the valves.…

    • 919 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    Hs131 Unit 4 Assignment

    • 1308 Words
    • 6 Pages

    It then continues as the right external iliac which comes together to the inferior vena cava, also known as the posterior vena cava. It is a vein that carries deoxygenated blood from the lower body to the heart. From there, the inferior vena cava leads to the right atrium of the heart. The right atrium is only one of the four hollow chambers of the heart. It receives blood from the superior vena cava and the inferior vena cava. The blood that comes through these veins is low in oxygen (“Right Atrium”, n.d.). After passing through the right atrium, we pass through the right atrioventricular (AV) valve, also called the tricuspid valve, and then we shall go through the right ventricle, lower right-hand chamber of the heart that pumps blood from the right atrium into the pulmonary arteries then to the lungs, to the pulmonary valve, or the pulmonary semilunar valve. The valves of the pulmonary semilunar valve opens when the right ventricle contracts. When the muscles…

    • 1308 Words
    • 6 Pages
    Powerful Essays
  • Powerful Essays

    Bio 202 Exam 1: Summary

    • 6050 Words
    • 25 Pages

    The cardiovascular system consists of : heart (심장), and vessels (혈관), arteries (동맥), capillaries (모세혈관) and veins (정맥). A functional cardiovascular system is vital (필수적인) for supplying oxygen and nutrients to tissues and removing wastes from them. Paths of Circulation: Pulmonary(폐의) Circuit : carrying blood to the lungs and back 1. The pulmonary circuit is made up of vessels that convey blood from the right ventricle to the pulmonary arteries to the lungs, alveolar capillaries, and pulmonary veins leading from the lungs to the left atrium. 2. Carries the deoxygenated blood away from the heart to the lungs, and there by it brings the oxygen containing blood from lungs to the heart. Systemic Circuit : carrying blood from the heart to the rest of body 1. The systemic circuit includes the aorta (대동맥) and its branches leading to all body tissues as well as the system of veins returning blood to the right atrium. 2. Carries the oxygenated blood from the heart to the body, and also brings back the deoxygenated blood from the body to the heart. Structure of the Heart A. Size and Location of the Heart 1. The heart lies in the mediastinum under the sternum; its apex extends to the fifth intercostal space. 2. Approximately the size of the fist (주먹) 3. Location - Superior surface of diaphragm - Left of the midline - Anterior to the vertebral column, posterior to the sternum Coverings of the Heart 1. The pericardium(심장막) which encloses the heart. - Protects and anchors the heart - Prevents overfilling of the heart with blood - Allows for the heart to work in a relatively friction-free environment 2. It is made of two layers: I. The outer, tough connective tissue fibrous pericardium II. visceral pericardium (epicardium; 외심막) that surrounds the heart. 3. At the base of the heart, the visceral pericardium folds back to become the parietal pericardium that lines the fibrous pericardium. 4. Between the parietal and visceral pericardia is a potential space (pericardial cavity) filled…

    • 6050 Words
    • 25 Pages
    Powerful Essays
  • Good Essays

    The blood flows through our heart in a series of different steps and factors. Oxygen flows into the heart through the right atrium where at this time the tricuspid valve is closed, allowing the blood to fill the right atrium. Next, the muscle walls of the right atrium contract and push the blood through the tricuspid valve into the right ventricle. Once this occurs the right ventricle contracts and pushes the blood through the pulmonic valve into the pulmonary artery. The oxygen rich blood is then returned from the lungs to the left sides of the heart and into the left atrium. The contract of the muscle of the left atrium pushes the blood out into the left ventricle. Finally once the left ventricle fills with blood the muscle walls contract pushing blood into the aorta and throughout the body (Thibodeau, 2008).…

    • 514 Words
    • 3 Pages
    Good Essays
  • Good Essays

    The right ventricle pumps blood into the pulmonary artery, which carries it to the lungs.…

    • 968 Words
    • 5 Pages
    Good Essays
  • Good Essays

    Blood enters the heart through the Superior Vena Cava which is the large vein at the top of the heart, and the Inferior Vena Cava, which is the large vein at the bottom of the heart. Blood flows into the right atrium, passes through the tricuspid valve, and makes its way into the right ventricle. It then moves through the pulmonic valve, into the pulmonary artery to the lungs.” After picking up oxygen in the lungs, the blood moves out of the lungs into the pulmonary vein, into the left atrium, through the mitral valve, and into the left ventricle that pushes blood to the body through the aortic valve. Once blood leaves the heart it is in the aorta where it flows to various parts of the body” (Whitlock, J. 2017).…

    • 470 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Sheep Dissection Plan

    • 496 Words
    • 2 Pages

    You will need to orient the heart so that the vena cava is placed dorsally. The apex of the heart will be inferior to the base. The superior/inferior left pulmonary veins along with the superior/inferior right pulmonary veins create an X shape on the dorsal/posterior side of the heart. The Superior vena cava lies just superiorly to the right pulmonary veins. Below the right pulmonary veins is where the right atrium can be found. The left atrium is just inferior to the left pulmonary veins. Bordering the left atrium is the coronary sinus. The coronary sinus separates the left/right atria from the left/right ventricles. Running longitudinally and separating the left ventricle from the right ventricle is the anterior interventricular sulcus. The coronary artery runs on an oblique angle from the right atrium to about midway down the right ventricle. The pulmonary trunk is on the superior end of the right ventricle and opens up inside of it via the pulmonary valve.…

    • 496 Words
    • 2 Pages
    Good Essays
  • Good Essays

    Fantastic Voyage part 1

    • 923 Words
    • 4 Pages

    The direct path that I am going to take from the femoral vein to the right lower lobe of the lung is as follows. We will begin at the femoral vein located in the thigh. As we travel upv we will pass the deep femoral vein, the abdominal aorta, and the hepatic portal. We then enter the inferior vena cava, on our way to the to the right atrium we will pass the small cardiac, and the right pulmonary. We will then make our way to the right atrium of the heart. From the right atrium of the heart we will then enter the right AV valve, on our way to the AV valve we will pass the right ventricle, and the pulmonary arteries. from the right AV valve we will then enter the right ventricle, to get to the right ventricle we will pass the pulmonary SL valve. from the right ventricle we will go to the pulmonary SL valve, to get to the pulmonary SL valve we will go through the pulmonary artery. from the pulmonary SL valve we will enter the pulmonary artery, finally we will enter the lungs. Once in the right you need to ensure that you are in the right lobe of the lung. Unlike the left lung the right lung has three lobes. The superior lobe at the top, the middle lobe in the middle, and…

    • 923 Words
    • 4 Pages
    Good Essays
  • Better Essays

    Anatomy 2 lab Guide

    • 2244 Words
    • 9 Pages

    Right Ventricle- Inferior to the right atrium and it receives deoxygenated blood and ejects it into the pulmonary trunk or pulmonary artery. (Pulmonary trunk branches into right and left pulmonary arteries, which deliver deoxygenated blood to the lungs through a series of vessels called the pulmonary circuit). This is where the blood becomes oxygenated.…

    • 2244 Words
    • 9 Pages
    Better Essays
  • Satisfactory Essays

    The process of the blood entering the heart to the superior, inferior venae cavae from the right atrium blood then goes through the tricuspid valve and into the right ventricle. While the right ventricle contracts the muscle, it force pushes blood through the pulmonary semilunar valve then goes into the pulmonary semilunar valve and into the pulmonary artery.…

    • 639 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    2.02 Circulatory Answers

    • 668 Words
    • 3 Pages

    Thrombus: blood clot in blood vessel, usually caused by slow blood circulation, immobility, or changes in vessel walls.…

    • 668 Words
    • 3 Pages
    Good Essays
  • Better Essays

    Fantastic Voyage

    • 1223 Words
    • 5 Pages

    Continuing to move up the vein we will pass through the external iliac which is formed with the common iliac on our way to the small intestines. Look really close and you should be able to see most of the colon. The veins of the common iliac are the vessels that bring the blood to the heart. The heart has two veins which are joined together and form the inferior vena cava. The function of the inferior vena cava is to bring de-oxygenated blood from the legs as well as any other lower regions to the right atrium. While we are here at the inferior vena cava let’s look around and see what it has to offer…

    • 1223 Words
    • 5 Pages
    Better Essays
  • Good Essays

    The heart lies in the thoratic cavity, organs associated with the heart are inferiorly, the hearts apex rested on the tendon of the diaphragm, superiorly, the great blood vessels, posteriorly the oesophagus, trachea and the left and right bronchus, laterally, the lungs and anteriorly the sternum and ribs. (Waugh& Grant 2014). The heart provides a constant blood circulation action and the blood vessels provide a network for the blood flow. The heart is the pump responsible for maintaining adequate circulation of oxygenated blood around the vascular network of the body, ( www.le.ac.uk) the right side of the heart pumps blood to the lungs (pulmonary circulation) and the left side receives oxygenated blood and supplies it to the rest of the body (systemic circulation). There are three types of blood vessel, arteries, capilleries and veins. Blood is pumped from the heart through the arteries at high pressure which could damage the tissue so it needs to go through the capillaires which are smaller low pressure blood vessels that are responsilbe for providing oxygen to the tissues, they also absord excess carbon dioxide and then deliver the blood into the veins which then supply the blood back to the heart. The heart generates its own electrical impulses, it does not rely on any other external mechanisn to make it beat. A normal heart rate is 60-80 times per minute, factors which can decrease or…

    • 800 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Path

    • 261 Words
    • 2 Pages

    The path blood take from the right femoral vein to lower lobe of the right lung via the pulmonary artery is as follows; we start in the right femoral vein which is located in the thigh and travel to the right external iliac vein. Blood from the femoral vein emptiness in the inferior vena cava but first must travel through the external iliac. The iliac vein joins with the inferior vena cava. The inferior vena cava takes deoxygenated blood form the lower limbs of the body to the right atrium (Thibodeau, Patton, 2008.). Following the inferior vena cava we travel in to the right atrium of the heart. The purpose of right atrium of the heart is to receive deoxygenated blood from the body through the inferior vena cava and pump it into the right ventricle (MedicineNet.com, 2012). Once we are ready to leave the right atrium we go into the right AV valve (AV is atrioventricular or cuspid, (Thibodeau, Patton, 2008.).The AV valve stops blood from flowing backwards and every time the heart beats the valve opens and closes. The AV valve allows blood to flow into the right ventricle. But before blood goes into the right ventricle it has to travel through the tricuspid valve. The tricuspid valve along with AV and SL are all structures that prevent blood from flowing backwards (Thibodeau, Patton, 2008.). So we now know that the right ventricle receives deoxygenated blood from the right atrium, but what we don’t already know is that the right ventricle sends the... [continues]…

    • 261 Words
    • 2 Pages
    Good Essays
  • Powerful Essays

    cardiac tumors

    • 9291 Words
    • 38 Pages

    The right atrium receives de-oxygenated blood from the body through the superior vena cava (head and upper…

    • 9291 Words
    • 38 Pages
    Powerful Essays

Related Topics