Preview

Bending Moment and Shearing Force

Better Essays
Open Document
Open Document
1013 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Bending Moment and Shearing Force
INTRODUCTION
Basic structural learning begins with an analyzing of a simply supported beam. A beam is a structural member (horizontal) that is design to support the applied load (vertical). It resists the applied loading by a combination of internal transverse shear force and bending moment. An accurate analysis required in order to make sure the beam is construct without any excessive loads which affect its strength.

A bending moment exists in a structural element when a moment is applied to the element so that the element bends. Moments and torques are measured as a force multiplied by a distance so they have as unit newton-metres (N·m). The concept of bending moment is very important in engineering (particularly in civil and mechanical engineering) and physics.

A shear stress, denoted [pic](Greek: tau), is defined as the component of stress coplanar with a material cross section. Shear stress arises from the force vector component parallel to the cross section. Normal stress, on the other hand, arises from the force vector component perpendicular or antiparallel to the material cross section on which it acts.

Objective : To show that at any section of a beam subjected to transverse loads;

i. The shearing force is defined as the algebraic sum of the transverse components of the forces to one side of the section.

ii. The bending moment is defined as the algebraic sum of the moments of the forces to one side of the section.

The applications of the experiment are to study about how to establish the shear and moment for beam and shaft. Beam and shaft are important structural and mechanical element in engineering.

THEORY

Consider the cantilever beam shown subjected to a number of transverse loads

[pic]

At any transverse section X-X:

1. the shearing force: Q=W3-W2-W1 Q=∑W

2. the bending moment:



References: 5. R. C. Hibbeler, Mechanics of Statics, 2005, Prentice Hall -----------------------

You May Also Find These Documents Helpful

  • Best Essays

    Nt1310 Unit 4 Lab

    • 2295 Words
    • 10 Pages

    b. Method of Sections: This method is usually “used to solve for the force in a member near the middle of truss” (Walker 149). Here, the structure in cut into two pieces; one of the pieces is not used while the other has a force member which is required to find. The free body diagrams of the section which the observers needs are drawn, and after steps similar to methods of joints are…

    • 2295 Words
    • 10 Pages
    Best Essays
  • Powerful Essays

    EGR 315 Final Paper

    • 2079 Words
    • 9 Pages

    This stress from equation 3 is known as the transverse shear stress, and is always accompanied with bending stress. Defining the variables in this equation, b is the width of section at y=y1, and I is the second moment of area of the entire section about the neutral axis.…

    • 2079 Words
    • 9 Pages
    Powerful Essays
  • Powerful Essays

    References: Metcalfe, P. and Metcalfe, R. 2005, Excel Senior High School Engineering Studies, Vivienne Petris Joannou, Singapore. Wilkinson, T. 2007, Structural Mechanics 2nd Edition, Pearson Education, Australia. Wilkinson, T. 2011, Sample Engineering Report, Blackboard Learning, Australia. Wilkinson, T. 2011. Laboratory Two Instructions, Blackboard Learning, Australia.…

    • 2020 Words
    • 9 Pages
    Powerful Essays
  • Good Essays

    e- If you exert a horizontal force of 0.20 N on the top surface (parallel to the surface) of a cube of Jell-O 6 cm, and observe a sideways displacement of 5 mm. What is the shear modulus of the Jell-O? (3 points)…

    • 1013 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    First of all, values of deflections (δv, δh) were calculated for various head angles and loads as shown in Table 1-8. These deflection values were plotted against Load and gradients of the graphs of δv/W and δh/W were found out for various angles as shown in Figure 1-8 and stored in table 9. A graph was plotted between δv/W and δh/W which results in a circle. From the circle, values of offset and radius were used to calculate Principal second moments of area and orientation of principal axes.…

    • 1440 Words
    • 16 Pages
    Powerful Essays
  • Powerful Essays

    A tensile test was performed on a 4140 steel sample and the axial and transverse strains were measured. Data points were collected at incremental loads and graphed to determine the elastic modulus (30.4 x 106). Poisson’s ratio was also calculated from the dataset and determined to be 0.29. These experimental values agree closely (within 2%) to the textbook values of the steel sample. A sample of 7075 Aluminum was used in a cantilever beam test. Intermediate and end loads were place on the sample and the strain was measured at various distances from the loads. Using the dataset from the individual loads, the superposition strain was calculated and agreed within 7% of the experimental strain with both loads. From the measured deflection of the cantilever beam and the dataset, Young’s Modulus for the aluminum sample was determined to be 9.1x106 psi which agrees within 8% of the textbook value.…

    • 4723 Words
    • 19 Pages
    Powerful Essays
  • Powerful Essays

    An investigation into beam bending and superposition. Being able to analyse how beams bend is an essential tool for all engineers. By using mathematics and material properties, engineers are able to compute structural deformation thus verifying a structures fitness for use. In this experiment a simply supported beam of aluminium is loaded with point forces in three different cases. A clock gauge is positioned in the middle of the beam to measure the deflection. The results of a complex arrangement of forces can be deduced by the superposition of more simple cases. Superposition is possible only when the response of the structure is linear, e.g. when deflection is directly proportional to the applied load. Also the experimental and theoretical deflections of the beam will be compared and a percentage error obtained. There was a second test performed in this investigation demonstrating the influence the 2nd moment of area, also known as the second moment of inertia, had on the load carrying capacity of the beam. The results from test 1 show that it is possible to deduce the deflection of the beam when loaded with point forces by superposition. Results from test 2 show that the deflection of a beam is influenced greatly by its moment of inertia, i.e. with a greater value of inertia there is a smaller deflection.…

    • 2138 Words
    • 9 Pages
    Powerful Essays
  • Powerful Essays

    Bending of Beam Lab Report

    • 1004 Words
    • 5 Pages

    In this experiment we tested the deflection of a beam when it is placed with its widest and shortest side of its cross section on the supports. In order to examine the deflection of the beam, we applied the load at the center of its length. In addition, observing the deflection on the beam, we wanted to observe if the behavior of the deflection would be different when the position of the beam changed. After conduction the experiment we conclude that when the beam is positioned with its widest side on the supports, deflection happens faster and as more load is applied the deflection increases.…

    • 1004 Words
    • 5 Pages
    Powerful Essays
  • Satisfactory Essays

    τ = shear force vx-area A εx= εy= εz = 0 Strain in rads. γxy= τxyG G =E2(1+v) G = τγ…

    • 536 Words
    • 3 Pages
    Satisfactory Essays
  • Better Essays

    be compression at the 'head' of the bending moment arrow and tension at the tail of the…

    • 1039 Words
    • 5 Pages
    Better Essays
  • Satisfactory Essays

    A rectangular cross-section that is 50 mm wide and 250 mm deep is subjected to shear force of 22 kN, axial force (tension) of 16.5 kN and bending moment of 33 kN-m. Calculate and show the stress diagrams in the cross-section. What is the maximum normal stress, and where does it occur. What is the maximum shear stress and where does it occur.…

    • 413 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    There are four parts in this big experiment, including deflection of a cantilever, deflection of a simply supported beam, the shape of a deflected beam, and circular bending. In these four parts, a same set of laboratory instrument and apparatus is used, concluding a bracket, a moveable digital dial test indicator, U-section channel, moveable knife-edge, and three material beams: brass, aluminum, and steel. The experiment methods, and fixed point to the beam are the differences between these four small experiments. The aim of this experiment is to improve the ability to use the precision engineering components like moveable digital dial test indicator, also understand the formula: Deflection= WL^3/3EI.…

    • 1440 Words
    • 6 Pages
    Powerful Essays
  • Better Essays

    Bending Moment Experiment

    • 2406 Words
    • 10 Pages

    we can verify the limit load for the beam of rectangular cross-section under pure bending.…

    • 2406 Words
    • 10 Pages
    Better Essays
  • Powerful Essays

    All rights 4-* Eight h Vector Mechanics for Engineers: Statics Introduction • For a rigid body in static equilibrium, the external forces and moments are balanced and will impart no translational or rotational motion to the body. • The necessary and sufficient condition for the static equilibrium of a body are that the resultant force and couple from all external forces form a system equivalent to zero, • Resolving each force and moment into its rectangular components leads to 6 scalar equations which also express the conditions for static equilibrium,…

    • 1509 Words
    • 13 Pages
    Powerful Essays
  • Powerful Essays

    The experiment started with setting the digital force display to zero. Place 100g mass to a hangar. Then place the hangar on the plastic bar below the cut. Record the reading on the digital force display, which is the experimental shear force. Repeat using 200g, 300g, 400g and 500g of…

    • 1818 Words
    • 7 Pages
    Powerful Essays

Related Topics