Preview

Aromatic Electrophilic Substitution (Ar-Se) Reactions

Satisfactory Essays
Open Document
Open Document
1436 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Aromatic Electrophilic Substitution (Ar-Se) Reactions
Engineering Chemistry III

Prof. K. M. Muraleedharan

Aromatic electrophilic substitution (Ar-SE) Reactions

The special reactivity of aromatic systems towards electrophiles arises mainly from two factors: the presence of π electron density above and below the plane of the ring - making it nucleophilic, and the drive to regain the aromatic character by opting for substitution as opposed to a simple addition reaction. Preference towards addition reactions in the case of alkenes and substitution in the case of aromatic compounds becomes evident if we analyze the energy profiles of these reactions (Figures 1 and 2).

Figure 1.

Indian Institute of Technology Madras

Engineering Chemistry III

Prof. K. M. Muraleedharan

Figure 2. Note: consider all the resonance structures of the wheland complex

The mechanism of electrophilic aromatic substitution involves an initial rate determining interaction of the π system with the electrophile to give a benzenonium ion intermediate (σcomplex or wheland complex), which undergoes a rapid de-protonation by the base in the second step to restore aromaticity (Figure 3).
E H
E H

+ E+

E H

fast

E

+ HB+

B

Figure 3. Some common electrophilic aromatic substitution reactions are: halogenation, nitration, sulfonation, Friedel-Crafts Acylation and Friedel-Crafts alkylation. These differ only in the

Indian Institute of Technology Madras

Engineering Chemistry III

Prof. K. M. Muraleedharan

nature and mode of generation of electrophiles, but in general follow the same two-step mechanism described above. Reagent combinations that lead to the generation of electrophiles in these reactions are shown in Figure 4.

Indian Institute of Technology Madras

Engineering Chemistry III

Prof. K. M. Muraleedharan

Reaction

Electrophile

Generation of electrophiles
Cl2 + FeCl3 Cl3Fe Cl Cl First step

Chlorination

Cl+

bromination

Br+

Br2 + FeBr3

Br3Fe Br

Br

Iodination

You May Also Find These Documents Helpful

  • Good Essays

    3. Triphenylmethanol can be prepared from phenylmagnesium bromide via several different Grignard reactions. Identify two other electrophiles (aside from benzophenone) that will react with PhMgBr to produce triphenylmethanol. Include a balanced reaction scheme for each of your answers.…

    • 562 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    Diels-Alder Reaction Lab

    • 486 Words
    • 2 Pages

    This particular Diels-Alder reaction exploits an interesting phenomenon. Although aromatic compounds do not normally participate in Diels-Alder reactions, the central ring in anthracene is reactive as a diene. Since all three rings of anthracene can not simultaneously have benzenoid character (Figure 1), the electrons in the pi system of the central ring react more like those of a standard diene. The reaction of the central ring in anthracene allows for the formation of two, independent benzene rings, as seen in the mechanism outlined in Figure 2.…

    • 486 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    diels alder

    • 1118 Words
    • 4 Pages

    The mechanism of the reaction involves a cyclic flow of electrons in a single step in which the diene, supplies 4 π electrons and the alkene or alkyne, also called the dienophile, supplies 2 π electrons. In this process, two new sigma bonds which link the former dienophile to the diene and one new pi bond between the former double bonds of the diene are formed.…

    • 1118 Words
    • 4 Pages
    Good Essays
  • Powerful Essays

    First, nitronium ion is made by the reaction between nitric acid and sulfuric acid, with sulfuric acid acting as a protonated reagent. The nitronium ion is a strong electrophile that can react with benzene ring to form the arenium ion intermediate, despite the fact that it can temporarily lose its stability provided by the resonances. After that, it regains its stability by deprotonating the intermediate and yields the final product, in this case is methyl-m-nitrobenzoate. This experiment will be carried out under controlled temperature of 15oC or lower, since higher temperature will result in the second nitro group addition. In this experiment, student will observe the mechanism of electrophilic aromatic substitution reaction through the nitration of methyl…

    • 1199 Words
    • 5 Pages
    Powerful Essays
  • Better Essays

    An electrophilic aromatic substitution reaction is the attack of an electrophile on an aromatic ring substituting for a proton. This reaction allows for the introduction of other functional groups onto the aromatic ring. The electrophile attacks the aromatic ring at the aliphatic position removing two electrons destabilizing the aromatic ring, but creating a resonance-stabilized carbocation called a sigma complex (arenium ion). Then the aliphatic proton is lost to give the substitution product.…

    • 3498 Words
    • 14 Pages
    Better Essays
  • Good Essays

    This reaction is designed to put functional groups onto aromatic rings. This is done through an electrophilic aromatic substitution where a positive species is strong enough to pull electrons out of the ring to bond it, and the ring pulls hydrogens in to rearomatize the ting is substitution. One way of doing this is through using a Friedel-Crafts method. If there are already substituents already on the ring the electrophilic attack of the carbocation or acylium ion so that the new group goes ortho or para to that group, depending on which group is the strongest electron donating group. If there are electron withdrawing groups present, the reaction will…

    • 739 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    Chem 211

    • 368 Words
    • 2 Pages

    Material covered Structure Determines Properties Alkanes & Cycloalkanes: Introduction to Hydrocarbons Alkanes & Cycloalkanes: Conformations and cistrans Stereoisomers Stereochemistry Alcohols & Alkyl Halides. Nucleophilic Substitution Structure & Preparation of Alkenes: Elimination Reactions Reactions of Alkenes: Addition reactions Alkynes Conjugation in Alkadienes & Allylic Systems Arenes and Aromaticity Reactions of Arenes: Electrophilic & Nucleophilic Aromatic Substitutions…

    • 368 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    Abstract: The objective of this experiment is to successfully perform a dehydration of a 2-butanol and a dehydrohalogenation of 2-bromobutane to form the products 1-butene, trans-2-butene, and cis-2-butene. It was found that a dehydration of 2-butanol yielded 4.6% 1-butene, 67.3% trans-2-butene, and 28.1% cis-2-butene, and a dehydrohalogenation of 2-bromobutane yielded 19.1% 1-butene, 69.9% trans-2-butene, and 11.0% cis-2-butene.…

    • 836 Words
    • 6 Pages
    Good Essays
  • Powerful Essays

    Objective: To perform an electrophilic aromatic substitution reaction, predict the effect on substituent orientation, and determine the identity of the product and mechanism for product.…

    • 727 Words
    • 3 Pages
    Powerful Essays
  • Powerful Essays

    The objective of this experiment was to illustrate electrophilic aromatic substitution by synthesizing p-nitroanilide (as well as ortho) from acetanilide by nitration. The para form was separated from the ortho form based on solubility properties using recrystallization techniques.…

    • 1646 Words
    • 7 Pages
    Powerful Essays
  • Powerful Essays

    It is often discussed that various functional groups bare ability to change the physical and chemical properties of an organic molecule. There are many varieties of functional groups, for example; Hydroxyl (a simple group with oxygen and hydrogen bonded to one another resulting in high polarity) Carbonyl (with the presence of carbon double bonded to oxygen), Carboxyl (a group with carbon double bonded to oxygen and also to a hydroxyl group), and Amine (containing nitrogen bonded to what could be a variety of elements). Each of these groups provides specific properties that are vary depending on the quantity and orientation of the groups in the molecule. Alcohols in particular (organic compounds holding one or more hydroxyl groups) are known to be very reactive because of the presence of that group. Thus the purpose of this investigation was to verify the theories of how organic molecular structure affects the properties of the molecule in question. In this specific experiment, three different alcohols with the same molecular formula but varying…

    • 1459 Words
    • 6 Pages
    Powerful Essays
  • Satisfactory Essays

    Introduction:The purpose of this lab was to determine the activating effect of aniline, phenol, anisole and acetanilide after reacting with pyridinum tribromide in order to undergo electrophilic aromatic substitution. The melting point of the isolated products were measured against the standards in order to determine how strong of an ortho/para activator the compound was based on the product(s) and melting point obtained. Theory: Electrophilic aromatic substitution is an organic reaction that takes place when an atom that is bound to an aromatic ring is replaced by an electrophile. The electrophile replaces a hydrogen atom on the ring. When a substituent group is present on the original compound, this substituent affects both the regioselectivity of the reaction, as well as the speed.…

    • 520 Words
    • 3 Pages
    Satisfactory Essays
  • Satisfactory Essays

    This experiment involved the addition of trans-cinnamic acid to bromine for the production of 2,3-dibromo-3-phenylpropanoic acid. This process depicted an electrophilic addition of a halogen to an asymmetrically substituted alkene. A result of this process was the presence of a stereospecific bromonium ion formed by the mechanism of the reaction.…

    • 428 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    The first step in this experiment was to sequentially pair basic compounds together and observe the chemical changes produced. Twelve compounds were paired together to produce eleven different results, successively labeled parts “A” through “L” (to exclude part F).…

    • 2221 Words
    • 9 Pages
    Powerful Essays
  • Good Essays

    Acetic

    • 379 Words
    • 2 Pages

    The first step involves the nucleophilic acyl substitution reaction of acetic anhydride with aniline to form acetanilide. The reaction is initiated by the donation of the lone pair of electrons on the nitrogen atom on aniline to the electron deficient carbonyl carbon atom in acetic anhydride, which is followed by the carbon oxygen double bond breaking in the electron deficient carbon with the oxygen taking the pair of electrons and resulting in a negative charge being present on oxygen and results in the formation of a tetrahedral intermediate. The next step involves the deprotonation of the positively charged nitrogen, which is then followed by reformation of the oxygen-carbon double bond and the loss of the acetate…

    • 379 Words
    • 2 Pages
    Good Essays